strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

نویسندگان

godwin chidi ugwunnadi

michael okpara university of agriculture, umudike, abia state, nigeria

چکیده

in this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regularasymptotically nonexpansive mappings in a real reflexive banach space with a uniformly g$hat{a}$teaux differentiable norm. our result is applicable in $l_{p}(ell_{p})$ spaces,$1 < p

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space  with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p

متن کامل

Weak Convergence of Mann Iterative Algorithm for two Nonexpansive mappings

The mann fixed point algorithm play an importmant role in the approximation of fixed points of nonexpansive operators. In this paper, by considering new conditions, we prove the weak convergence of mann fixed point algorithm, for finding a common fixed point of two nonexpansive mappings in real Hilbert spaces. This results extend the privious results given by Kanzow and Shehu. Finally, we give ...

متن کامل

Strong Convergence Theorems on the Modified Iterative Algorithm for a Family of Finite Nonexpansive Nonself Mappings

Let K be a nonempty closed convex subset of a real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Let Ti : K → E, i = 1, 2, · · · , N be a family of nonexpansive mappings which are weakly inward with F = ⋂N i=1 F (Ti) 6= ∅. Let f : K → K be a fixed contractive mapping. For given x0...

متن کامل

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

Convergence and Stability of Modified Random SP-Iteration for A Generalized Asymptotically Quasi-Nonexpansive Mappings

The purpose of this paper is to study the convergence and the almost sure T-stability of the modied SP-type random iterative algorithm in a separable Banach spaces. The Bochner in-tegrability of andom xed points of this kind of random operators, the convergence and the almost sure T-stability for this kind of generalized asymptotically quasi-nonexpansive random mappings are obtained. Our result...

متن کامل

Strong Convergence of CQ Iteration for Asymptotically Nonexpansive Mappings

Tae-Hwa Kim and Hong-Kun Xu [Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Analysis 64(2006)1140-1152 ] proved the strong convergence theorems of modified Mann iterations for asymptotically nonexpansive mappings and semigroups on bounded subset C of a Hilbert space by the CQ iteration method. The purpose of this paper is to mod...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of nonlinear analysis and applications

جلد ۷، شماره ۲، صفحات ۹۳-۱۰۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023